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Abstract

The mclusion of eddy currents into micromagnetic programs 1s important for the proper
analysis of dynamic effects in conducting magnetic media. This subject has received little
attention in the past although 1t can cause significant errors in device calculations. This paper
introduces a computational test bed for eddy current calculations and discusses some mteresting

analytic cases in this simplified geometry.



Introduction

A solution of micromagnetic problems with eddy currents has been
proposed by Della Torre and Eicke and immplemented by Torres, et al.
This approach requires the simultaneous solution of the coupled equation
tor eddy currents and for magnetization reversal.

Here we present a program using finite difference time domain, FDTD,
calculations for a simplified problem to be used as a test bed for more
oeneral programs,

We mtend to use this program to verify the accuracy of a more general
programs,

We also present some results that we will use to test the final model.



An applied magnetic field changes the magnetization,
which induces eddy currents, which in turn changes the
applied field.

Since eddy currents are bound by the shape of the material,
the electric field close to the surface must be tangent to it.

Surface charges are induced to steer the currents.

To avoid having to compute these charges, we chose a
circular cylinder shape.

By symmetry the electric field is circular.this symmetry
permits all quantities to vary with the radius only.



The model

* The model 1s an mfinite circular cylinder of radius R

» We assume a perfect crystal of uniaxial material with easy axis,
z, coinciding with the cylinder’s axis.

» We assume magnetization 1s mitially uniform in the z-direction.

* To break the symmetry, we oftset the surface magnetization by a
small angle nucleating a Bloch wall that propagates towards
the center.

* The moving wall induces eddy currents that impede the wall’s
progress.

* Due to symmetry as the magnetization changes 1t will remain
cylindrically symmetric.






The natural coordinate svstem one would use 1f one were attempung to solve
the problem analytcally would by the eviindrical coordinate system.
However, 1t has a singularity at the z-axis which presents problems as the
MAZNCLIZailon L]|".';TI"-_?ikaf'i'.“." saturation mn the reverse direction,

We clected to use a Cartesian coordinate svstem illustrated below
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Only the nodes along theaxis are computed,
using FDTD

The nodes on adjacent rows are computed by
rotating interpolated values.

There Is a singularity along the axis of the
coordinate system the presents problems in
trying to saturate the rod.

We used this coordinate system to ease the
transition to calculating arbitrary shaped
specimen



Magnetization can be computed by either the Landau-Lifshitz-Gilbert
equation to study high speed phenomena

or by minimizing the energy of the system at each calculation step.

[n this calculation, we force the magnetization to lie in the y-z plane, so that
only Bloch-type walls may be formed, so we can’t have precessing spins.
We are forced to use the energy minimization approach.

This limits us to relatively slow applied field changes compared to

magnetization changes.



The magnetization will be of the form
Mr) = Mg(coser 1, + sinor ly),

By Faraday’s law, the curl of that field 1s given by

B (eH oM
carl E = -2 - + :
at a ot

Thus, the electric tield 1s given by

wol, | |OH(p,8}  OM(p.H)
¥ + —

E(r) = -
*) of ot

p dp.

0

This electric field will induce the eddy currents according to Ohm’s law J =0 E.



Ampere’s law reduces the applied field at the surface, H, (R) = H,,, in the
interior by eddy currents.

Thus the field at any point, H_(r) 1s given by

R
H{)=H,_ - f J, dp.

The magnetization 1s computed by minimizing the total energy, which is the

sum of the exchange energy, the anisotropy energy and the Zeeman energy.




The exchange energy per unit computational cell 15

A(6 M*-M-ZM)
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f1 15 the distance between nodes mn the grid

2 indicates a sum over nearest neighbor nodes,

The anisotropy energy for uniaxial anisotropy 1s
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Finally. the Zeeman energy 15 given by

Waoeman = ~“PoH, (1) M, (7) = —pg My H, (r)cosfa(r])].



At each time step the patern is recomputed by vary(np
at each node using the current valuéiof

The change in magnetization and then the electric field are
computed.

With this electric field, the eddy currents are computed and
theH is recomputed.

This procedure is recomputed urdilconverges.
Then we proceed to the next time step until finished.



Start time step

"

Compute a(r) to
mmmuze cnergy
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J, and H




This problem is defined by the material parameters: A, K. and M. the geometric

parameter R and the applied field function of time.

We prefer to use the domain wall width of a planar Bloch wall, /.

A
I‘Iﬁ‘:“ E,

and the wall energy density w, per unit area of a planar Bloch wall

w, = 4/4K.



An analytical example

I /w15 negligible compared to rv < R, then the problem reduces
to a domain level problem.

Furthermore, we can neglect the effect of wall curvature on
both /wand wu.

This problem has a single unknown, the radius. rv. of the wall.
and the magnetization changes when the wall moves.



The line integral of E is

Iy Mvr, f r>r,
$ E-dl - 0 if r<r,
c

where v 1s the velocity of the domain wall.

Hence, the current density is given by

FZUpnMsvrw
J =3 r
0 if r<r,

L if r>r,




The tield at the wall 15

2ap, Movr,

H(r,) = |H,, - Ay,

R

H _ + 2op, Movr, In(Rir )] 1.

Then, we can set the tield equal to zero and solve tor the wall’s
velocity

y = H o

i 2ap, Mcr In{R/r )




H ., tending to push the wall towards the center. This 1s due to the fact that the
total wall energy per unit length, W, 1s directly proportional to the length of the
circumference of the wall.

W,=27nr,w,.

So that

W

H, = .
HoM dr,, HoMs  BoM; ar,

1 dw. =21tww+21trwdww

Even if there is no applied field but the wall energy is uniform, if /,, > H, then

the wall will shrink to the center as was observed in iron single crystals.



0

- Iy = Iy =
L o
uopezaubEwW paz)ewIoN

SIVPED R



Coercivity

We can simulate a critical field by applying a ripple to the wall energy
w, = w, + Awsin(Pr ),
where the wavelength of the ripple, A=21/[3, is much larger than the wall width.
The peak ripple slope 1s dw /dr, 1s BAw.
T'hus, to keep the wall propagating, the wall field must be greater than PAw.

We have created an effective critical field of Aw.

For smaller fields, the wall hangs up periodically at points separated by A.



For very short wavelength ripple, integrating the wall energy over the ripple
gives zero, and no critical field.

Assuming the equal angle model

r

0 if r>r,+l/2
o = Lu(r -r/i if r-l/2<r<r+i/2
T if r<r,-l/2,

.

one can compute the critical field as a function of wall width.

The average critical field over the wall 1s

i
<H > = A_Iw f cos(Pr)dr = Z;—;vsin%‘,

=12
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[t the applied field reverses, there are two possibilities:
« the wall could reverse direction

« oranew wall could be nucleated at the surface and start propagating inward.

« The choice of which occurs 1s determined by the size of the nucleating field

compared to the size of the propagating field.

« In the analytical example, we simply postulate that there 1s no wall until the

an arbitrary nucleating field 1s reached.



[f that field 1s small enough, there 1s the possibility that there may be more
than one wall active at any time.
However, the outermost wall will see the largest field since the inner walls

will have additional shielding by the eddy currents between the walls.



Energy loss considerations
« There are two losses 1n this model: hysteresis and eddy current losses.

« The hysteresis loss per unit length 1s given by

R
oM
Whe = f21tr|.L0H0Fdr.
0

« For the thin wall with a constant applied field, this reduces to

Wi = Adnrp, H-Mgv.



The eddy current loss per unit length 1s given by

R
W, = IZEUJEI' ar.
0
For a thin wall with a constant applied field, this reduces to

2 2
v 20 y,Mvr, g 20, M.vr, In(RSr.).

r r

Fr

We note that in this equation, both v and r,, are functions or time, even 1f the

applied field 1s held constant.



Conclusions
We have presented a simplified model of the mtroduction of eddy currents
Into a micromagnetic calculation.
We also discussed the special analytic calculation in the case of a thin
domain wall.
Coercivity can be added by adding a wall energy ripple.
This paper is intended to provide a limiting calculation to test a more general
model.

The question remains how to include wall mass.



